94 research outputs found

    Highly efficient coupling between a monolithically integrated photonic crystal cavity and a bus waveguide

    Get PDF
    We experimentally demonstrate a new optical filter design comprising of a photonic crystal cavity and a low index bus waveguide which are monolithically integrated on a silicon-on-insulator (SOI) platform. We have fabricated oxide clad PhC cavities with a silicon nitride waveguide positioned directly above, such that there is an overlap between the evanescent tails of the two modes. We have realised an extinction ratio of 7.5dB for cavities with total Q of 50,000.Postprin

    Ultra-compact modulators based on novel CMOS-compatible plasmonic materials

    Get PDF
    We propose several planar layouts of ultra-compact plasmonic waveguide modulators that utilize alternative CMOS-compatible materials. The modulation is efficiently achieved by tuning the carrier concentration in a transparent conducting oxide layer, thereby tuning the waveguide either in plasmonic resonance or off-resonance. Resonance significantly increases the absorption coefficient of the plasmonic waveguide, which enables larger modulation depth. We show that an extinction ratio of 86 dB/um can be achieved, allowing for a 3-dB modulation depth in less than one micron at the telecommunication wavelength. Our multilayer structures can potentially be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits

    Optical time reversal from time-dependent Epsilon-Near-Zero media

    Get PDF
    Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time-variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realisation of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realises a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008)]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide (AZO). An incident probe beam is both negatively refracted and time-reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required e.g. for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies

    CMOS compatible integrated all-optical radio frequency spectrum analyzer

    Get PDF
    We report an integrated all-optical radio frequency spectrum analyzer based on a ~4cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahighrepetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other technique

    Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip

    Get PDF
    We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of “shutting down”, i.e. the self-terminating behavior that is a very common and detrimental occurrence in externally pumped OPOs. Further, our scheme consistently produces very wide bandwidth (>300nm, limited by our experimental set-up) combs that oscillate at a spacing equal to the FSR of the micro cavity resonance

    Engineering Waveguide Nonlinear Effective Length via Low Index Thin Films

    Full text link
    Novel photonic nanowires were fabricated using low-index materials and tested in the near-infrared spectrum to assess their nonlinear optical properties. In this work, we argue the need to redefine the standard nonlinear figure of merit in terms of nonlinear phase shift and optical transmission for a given propagation distance. According to this new metric, our devices largely outperform all established platforms for devices with a linear footprint in the range of 50 to 500 um, which is demonstrated to be an outstanding technological gap. For 85 fs pulses, with carrier wavelength at 1480nm and sub-uW power levels, a spectral broadening exceeding 80% of the initial bandwidth was recorded over a propagation length of just 50 um. Leveraging on CMOS-compatible processes and well-established materials such as silicon, silica, and indium tin oxide, our devices bring great promise for developing alternative all-optical devices with unparalleled nonlinear performances within the aforementioned range
    corecore